
ARTICLE

Additive manufacturing of 3D nano-architected
metals
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Most existing methods for additive manufacturing (AM) of metals are inherently limited to

~20–50 μm resolution, which makes them untenable for generating complex 3D-printed

metallic structures with smaller features. We developed a lithography-based process to

create complex 3D nano-architected metals with ~100 nm resolution. We first synthesize

hybrid organic–inorganic materials that contain Ni clusters to produce a metal-rich photo-

resist, then use two-photon lithography to sculpt 3D polymer scaffolds, and pyrolyze them to

volatilize the organics, which produces a >90 wt% Ni-containing architecture. We demon-

strate nanolattices with octet geometries, 2 μm unit cells and 300–400-nm diameter beams

made of 20-nm grained nanocrystalline, nanoporous Ni. Nanomechanical experiments reveal

their specific strength to be 2.1–7.2MPa g−1 cm3, which is comparable to lattice architectures

fabricated using existing metal AM processes. This work demonstrates an efficient pathway

to 3D-print micro-architected and nano-architected metals with sub-micron resolution.
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Additive manufacturing (AM) represents a set of processes
that enable layer by layer fabrication of complex 3D
structures using a wide range of materials that include

ceramics1, polymers2, and metals3. The development of metal
AM has revolutionized the production of complex parts for
aerospace, automotive and medical applications4,5. Today’s
resolution of most commercially available metal AM processes is
~20–50 μm6; no established method is available for printing 3D
features below these dimensions7. It has been shown that unique
phenomena arise in metals with micro-dimensions and nano-
dimensions, for example light trapping in optical meta-materials8

and enhanced mechanical resilience9–15. Accessing these
phenomena requires developing a process to fabricate 3D metallic
architectures with macroscopic overall dimensions and individual
constituents in the sub-micron regime.

Minimum feature size in metal AM is generally limited by the
material feedstock, i.e., the method of supplying metal in powder,
wire, sheet or ink form during fabrication. Inkjet-based
methods16,17 manipulate 40–60 μm droplets of metal inks,
limiting the smallest features to at least the size of a solidified
droplet. Wire-based and filament-based processes, such as plasma
deposition4 and electron beam freeform fabrication (EBF3)18, rely
on locally melting a >100 μm-diameter metal wire, which pro-
duces millimeter-sized features. Powder-based processes, such as
selective laser melting (SLM) and laser engineered net shaping19,
consolidate ~0.3–10 μm metal powder particles, which limits the
smallest feature size to about 20 μm6,20. Overcoming these reso-
lution limitations requires a capability to manipulate nanoscale
quantities of metals in a stable and scalable 3D printing process.

Alternative material feeds to fabricate 3D metal structures with
<10 μm resolution include nanoparticle inks, ion solutions, dro-
plets of molten metal, and precursor gases7. Methods that use
localized electroplating21,22 or metal ion reduction23,24 are
capable of producing features down to 500 nm using a very slow
process that is limited by electroplating rate. Electrochemical
fabrication (EFAB) allows for manufacturing geometries with
10-μm features and 4-μm layers, but is limited to structures with a
total height of 25–50 layers25. Other technologies, like micro-
deposition of metal nanoparticle inks26–28 or molten metal29 and
focused ion beam direct writing, also suffer from slow throughput
and are more suited for low-volume fabrication and repair30.

We demonstrate a facile and reproducible process to create
complex 3D metal geometries with a resolution of 25–100-nm.
We synthesize hybrid organic–inorganic materials that contain Ni
clusters and use them to produce a metal-rich photoresist. We
then use two-photon lithography (TPL) to sculpt computer-
designed architectures out of the resist and pyrolyze them first in
inert atmosphere at 1000 °C and then in reducing atmosphere at
600 °C to volatilize the organic constituents. Using this approach,
we demonstrate the fabrication of periodic Ni octet nanolattices
with the unit cell size of 2 μm and beam diameters of 300–400 nm
diameter as a proof-of-concept. TEM analysis reveals that the
microstructure of Ni beams is nanocrystalline and nanoporous,
with a 20 nm mean grain size and 10–30% porosity within each
beam. Nanomechanical experiments demonstrate that the
strength of these Ni nanolattices is comparable to that of the
metal lattices with 0.1–1.0 mm beam diameters fabricated using
alternative metal AM technologies. These findings suggest an
efficient pathway to create complex 3D metal structures with
nano-scale resolution.

Results
AM of nickel nano-architectures. We first synthesized nickel
acrylate using a ligand exchange reaction between nickel alkoxide
and acrylic acid (Fig. 1a) and combined it with another

acrylic monomer, pentaerythritol triacrylate, and a photoinitiator,
7-diethylamino-3-thenoylcoumarin (Fig. 1b). We then drop cast
this photoresist on silicon substrate and used TPL to sculpt the
prescribed 3D architectures (Fig. 1c). The non-polymerized resist
was then washed away, and the free-standing cross-linked
polymer nano-architectures were then pyrolyzed to volatilize the
organic content. This process yielded a replica of the original 3D
structure with ~80% smaller linear dimensions made entirely out
of metal (Fig. 1d).

We demonstrate the feasibility and efficiency of this metho-
dology by first fabricating nanolattices with 10 μm octet unit cells
comprised of 2-μm diameter circular beams out of the
synthesized photoresist using layer-by-layer TPL with 150 nm
layer thickness. Scanning electron microscopy (SEM) images in
Fig. 1f–h reveal that these nanolattices had fully dense beams and
uniformly sized, high-fidelity features. Each sample had four unit
cells per side, 40 μm, and a height of three unit cells, 30 μm, and
was supported by vertical springs at each corner and by a vertical
pillar in the center. These supports served as pedestals that would
allow the sample to release from substrate after undergoing an
isotropic ~80% shrinkage during pyrolysis (see Supplementary
Fig. 1).

Pyrolysis was performed in a tube furnace via a two-step
procedure: first at 1000 °C in argon to remove most of the organic
content from the samples and to consolidate the Ni metal clusters
into denser features, which is accompanied by ~5× linear shrinkage
in feature size; and second at 600 °C in forming gas, to reduce the
oxygen content in the mostly-Ni samples and to facilitate grain
growth. SEM images in Fig. 1(i, j) show a representative 3D Ni
architecture and convey that the 10-μm unit cells and 2-μm diameter
beams in the original polymer-metal structure shrank to produce ~2
μm unit cells and ~300–400 nm diameter beams in the nickel
nanolattice. This also implies that 150-nm layer thickness in the
polymer structure corresponds to 30-nm layer thickness in the metal
structure. The zoomed-in image in Fig. 1j shows that the metal
beams are ~10–30% porous caused by pyrolysis.

Microstructure and chemical composition of as-fabricated
metallic 3D architectures. Chemical composition of the as-
fabricated Ni architectures was characterized using energy-
dispersive X-ray spectroscopy (EDS), for which we fabricated
individual unit cells with tetrakaidecahedron geometries using the
same methodology. Figure 2a shows that these structures shrunk
from 20-μm wide unit cells and 2-μm diameter beams on 6-μm
pillar supports to 4-μm unit cells and 0.4-μm diameter beams
after pyrolysis (Fig. 2b). EDS spectrum (Fig. 2d) taken from a
beam section shown in Fig. 2c reveals the chemical composition
to be 91.8 wt% Ni, 5.0 wt% O, and 3.2 wt% C. A Si peak from the
substrate is also present. EDS maps in Fig. 2e–h convey a rela-
tively homogeneous distribution of each element within the
printed structure, which consists mostly of nickel metal and is not
segregated into individual nickel-rich, carbon-rich, or oxygen-
rich phases.

We also fabricated some few-micron long, 25–100-nm
diameter metal beams that spanned the 1.25-μm wide opening
in a silicon nitride membrane directly on the transmission
electron microscopy (TEM) grids (Fig. 3a) to analyze the atomic-
level microstructure of pyrolyzed materials. Figure 3b displays a
bright-field TEM image taken along a beam that reveals
multiple coalesced grains with a mean size of 21.4± 2.0 nm (see
Supplementary Table 1). The electron diffraction pattern (Fig. 3d)
taken from the region shown in Fig. 3c conveys a strong Ni signal
and a much weaker contribution from NiO. A representative
high-resolution TEM (HRTEM) image (Fig. 3e) of the beam edge
contains multiple lattice fringes, which allowed the calculation of
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interplanar atomic spacings using fast Fourier transform (FFT).
We identified three distinct spacings: Ni crystals (region 1,
spacings of 2.01 and 2.04 Å), Ni3C particles (region 2, spacings of
1.98 and 2.14 Å), and NiO crystals (region 3, spacing of 2.06 Å).
More details can be found in the Methods section. Bright-field
TEM revealed that Ni crystals occupy >90% of the examined
volume, NiO <10%, and Ni3C <1%, consistent with EDS results
(Fig. 2d and Supplementary Fig. 3). TEM analysis further revealed
the presence of nickel (II) oxide nanoparticles with diameter of
<5 nm at the surface that were likely formed through surface
oxidation in air after TEM sample preparation. Our pyrolysis is
equivalent to carbothermal reduction at 1000 ˚C followed by

reduction by hydrogen and carbon at 600 ˚C, with no oxygen
present in the flowing gas. Literature on this type of thermal
treatment reported the composition to be mainly metallic nickel
with a minor amount of nickel carbide and/or carbon31.

In situ compression of nickel nanolattices. We conducted uni-
axial compression experiments on ten Ni octet nanolattices with
relative densities of 27–42% and beam sizes of 300–400 nm (see
Supplementary Table 2). The experiments were conducted in situ,
in a SEM-based nanomechanical instrument, comprised of a
nanoindenter-like module (Nanomechanics, Inc.) inside of SEM

Galvo mirror

fs laser

Si chip

Glass

Spacer

63× objective

Oil

Printed part

Metal-containing
photoresist 

Metal
clusters

Pyrolysis

Metal
grains

10 μm

2 μm

Organic
ligands

7-Diethylamino-2-thenoyl
coumarin

Nickel acrylate

Pentaerythritol
triacrylate 

Metal-containing
photoresist 

Metal precursor

Acrylic resin Photoinitiator

Nickel 2-methoxyethoxide Acrylic acid 2-methoxyethanol

O O
O

O

O

O

O

O

OH

O

O

N O O

O

S

O

O O

O
OH

+ 2 + 2 HO
Ni2+

O– –O
Ni2+O– –O

Ni2+O– –O

10 μm

2 μm

a

b

f g h

i j

c

d e

Fig. 1 Process for nanoscale additive manufacturing of metals and SEM characterization of the fabricated samples. a Ligand exchange reaction used to
synthesize metal precursor with cross-linking functionality. b Metal precursor, acrylic resin, and photoinitiator are mixed to form a transparent metal-
containing photoresist. c Schematic of two-photon lithography (TPL) process used to sculpt the scaffold. d Schematic of fabrication of metal-containing
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chamber (Quanta 200 FEG, FEI), which enabled observing the
deformation while simultaneously collecting load vs. displace-
ment data32 (see Supplementary Movie 1). The collected data
were converted into engineering stresses and strains by dividing
the load by the sample footprint area and dividing the displace-
ment by the initial sample height, respectively. Figure 4a–d shows
SEM snapshots obtained during a compression experiment of a
representative sample; stress vs. strain data for four representative
samples are shown in Fig. 4e (data for additional six samples are
presented in Supplementary Fig. 4). All stress–strain data appear
to be self-consistent and reproducible. A toe region in the initial
portion of each experiment (not shown) is representative of
deformation before establishing full contact between the sample
and flat punch indenter tip (see Supplementary Fig. 5 for full
stress–strain data). The toe region also included the failure of the
supporting pillar, which allowed for establishing full contact
between the sample and the substrate.

We found that the stress vs. strain data was typical for cellular
solids compressions, with the characteristic elastic loading,
plateau, and densification sections33. The arrows on the plot are
correlated with the images above and demarcate specific stages
during compression: initial contact (region A), elastic deforma-
tion (region B), layer-by-layer collapse (region C), and densifica-
tion (region D). The point of full contact was determined using
harmonic contact stiffness and SEM video. The slope of the elastic
loading segment, up to 10–15% strain (region B), was used to
estimate structural stiffness of the nanolattices, which ranged
from ~47 to 174MPa. The strength of Ni nanolattices was defined
as the maximum stress prior to the first buckling event, marked
by open circles in the data in Fig. 4e, and ranged from 6.9 to 18.2
MPa. The elastic region was followed by layer-by-layer collapse

up to 65% strain (region C); two of the four samples were
unloaded at 30 and 60% strain. The two other samples were
compressed to 70–85% strains, reached densification (region D)
and then unloaded (see Supplementary Movie 1). None of the
nanolattices recovered after deformation.

Discussion
EDS analysis revealed that the fabricated nanolattices have a
composition of 91.8 wt% Ni, 5.0 wt% O, and 3.2 wt% C. It is
reasonable to expect traces of carbon in the pyrolyzed structures
caused by the high solubility of carbon in Ni at 1000 °C34, which
leads to carbon precipitation at nickel surface upon cooling down
to room temperature. TEM analysis revealed that the carbon also
exists in the form of 5 nm-sized Ni3C precipitates within the
beams (Fig. 3e). The accuracy of EDS in quantifying the carbon
content may not be sufficient because it is sensitive to the spur-
ious carbon deposited in the SEM chamber35. The presence of 5.0
wt% O in the nanolattice can be attributed to formation of a
native oxide on Ni surface and to full oxidation of small (<6 nm)
Ni surface nanoparticles36.

Figure 4f shows the specific strength of Ni nanolattices
fabricated in this work and those of the metallic lattices fabricated
using other metal AM processes as a function of beam diameter
on a log–log plot (see Supplementary Table 2 for details).
This plot reveals that the specific strength of metallic lattices in
refs. 16,37–41 decreases by a factor of 280 as the beam diameter is
reduced from 1.78 to 0.04 mm, with the lowest reported specific
strength of 0.7 MPa g−1 cm3 for octahedral silver lattices. Nano-
crystalline Ni nanolattices in this work have the specific strength
of 2.1–7.2 MPa g−1 cm3, which is ~2–10 times higher than that of
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octahedral silver lattices with ~40-μm diameter beams16 and
~2–7 times higher than the stainless steel lattices with ~200 μm
diameter beams37. It appears to be on the same order as NiTi
octahedral lattices with ~250-μm diameter beams40 and
AlSi10Mg diamond lattices with ~400 μm beams41. This suggests
that the AM process developed in this work is capable of pro-
ducing architectures with feature sizes that are an order of
magnitude smaller than those fabricated using existing AM
processes while retaining high strength. The specific strength
calculations were performed with the assumption of monolithic
beams, which leads to its underestimation because the nano-
crystalline Ni within the beams has 10–30% residual porosity.

Some of the existing literature on the deformation of nano-
porous metallic foams42 and individual metallic nano-pillars10,43

report higher strengths upon uniaxial compression than ones
reported in this work. The key difference between the strength
reported in this work and those in previous reports is that it is
representative of the structural strength of the nanolattice, where
each beam has heterogeneous porous microstructure, as well as
each nodal junction, and both are subjected to a complex stress
state upon global compression. The microstructure that comprises
nanolattices in this work is nanocrystalline and nanoporous, and
has different levels of hierarchy in the sense that each individual
beam is nanocrystalline and nanoporous, as well as the entire
structure. This microstructure within the individual beams stems
from sintering of the Ni nanoparticles after the organic compo-
nents volatilize; it's in distinct contrast to the monolithic metallic
beams in all other literature on the deformation of nanoporous
materials. This microstructure is detrimental to the overall

structural strength in two ways: (1) the additional porosity within
each beam lowers the overall relative density of the architecture,
and (2) upon mechanical deformation, each sintered junction
experiences a local stress state, which creates an effective stress
concentration in the material at an adjacent pore. The pores that
border these regions of local stress concentrations can be viewed
as notches or flaws that serve as locations of failure initiation upon
mechanical loads. The distribution of nano-pores in each beam
that comprises the nanolattices in this work leads to a distribution
in the local failure strengths, which—in combination with the
detrimental effects of lower relative density and the presence of
junctions—serves to lower the overall structural strength.

The specific strength of the Ni nano-lattices in this work is
50–80% lower than that of Cu meso-lattices with a similar relative
density reported in ref. 11, which likely stems from the lattice
strength being governed by that of the monolithic, fully dense
beams with grains spanning full beam width. The strength of
nanoporous Au stochastic foams in ref. 42 was reported to be
close to that of monolithic gold because each ligament is a vir-
tually defect-free, single crystalline beam, whose strength
approaches ideal strength of gold42. These foams have a funda-
mentally different microstructure compared to the nanolattices in
this work in that they are stochastic foams with relatively slender,
curved single-crystalline pristine beams. A direct comparison
between the compressive strengths of nanocrystalline Ni
nanolattices in this work and those of hollow lattices reported in
refs 12,14,15,32,44 may be misleading, because this work is focused
on solid-beam metallic nanolattices, which deform via compres-
sion and plastic flow upon uniaxial compression; the others
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contain hollow shell beams and undergo a different deformation
mechanism upon compression that includes shell buckling and
layer-by-layer collapse.

Figure 5 shows minimal reported printed feature sizes
demonstrated in this work and many other metal AM processes
available today (see Supplementary Table 3). The plotted ranges
include both layer thickness and minimum lateral feature size.
The minimum z-feature is determined by the thickness of a single
layer of material. The minimum lateral feature is defined by
multiple factors, which include the energy beam spot size and
control over the melt pool. The data in Fig. 5 demonstrates that
the AM process developed in this work is capable of producing
features that are an order of magnitude smaller compared to
those produced by other 3D-capable AM processes.

Another key aspect of any metal AM process is the throughput.
Using hybrid organic–inorganic photoresist developed in this
work allows for writing speeds of 4–6 mm s−1, which is ~100
times faster than that for TPL of metal salts24. Comparing the
speeds of metal AM processes with different resolutions can be
accomplished by normalizing the write speed (μm s−1) by the
feature size (μm) or by normalizing the volumetric throughput
(μm3 s−1) by the voxel volume (μm3) (see ref. 7). For a typical
300–600 nm feature size printed by TPL45, writing speeds in this
work correspond to defining 6700–20000 voxels s−1, a printing
speed that is out of reach for state-of-the-art micro-scale metal
AM techniques, i.e., electrohydrodynamic printing (0.05–300
voxel s−1), local electroplating (0.04–1.0 voxels s−1), focused
beam methods (0.01–0.8 voxels s−1), and direct ink writing
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(0.7–3000 voxels s−1)7 (see Supplementary Table 4 for linear
writing speed and volumetric throughput data). High scanning
speeds and intrinsic advantage of parallelizing light delivery using
lithographic methods suggest that the presented AM process
lends itself to streamlined and efficient manufacturing of metal
nano-architectures.

We developed an AM process to create 3D nano-architected
metals using an efficient lithography-based approach. Using this
process, we fabricated Ni octet-lattices with 2-μm unit cells,
300–400-nm beams and 30-nm layers. The resolution of this
method allows printing metal features with 25–100-nm dimen-
sions, which is an order of magnitude smaller than feature sizes
produced using all other 3D-capable metal AM methods without
sacrifice in mechanical strength. This nanoscale metal AM
method is not limited to nickel: other organometallics can be used
to derive UV-curable metal-based photoresists using similar
chemical synthesis. Nanoscale AM of metals has direct implica-
tions and opportunities for streamlined production of complex
sub-millimeter devices, including 3D MEMS6, 3D microbattery
electrodes46, and microrobots and tools for minimally invasive
medical procedures47.

Methods
UV-curable metal-based photoresist. Acrylic acid (anhydrous, 99%), propylene
glycol monomethyl ether acetate (PGMEA) (>99.5%), dichloromethane (anhy-
drous, ≥99.8%), 2-methoxyethanol (anhydrous, 99.8%), and isopropyl alcohol
(IPA) (99.7%) were purchased from Sigma Aldrich. Nickel 2-methoxyethoxide, 5%
w/v in 2-methoxyethanol was purchased from Alfa Aesar, and 7-diethylamino-3-
thenoylcoumarin was purchased from Exciton. Acrylic acid (100 mg) was slowly
added to nickel 2-methoxyethoxide solution (1290 mg) in a glove box and
manually agitated. We observed the nearly immediate change of the solution color
from brown to green, which is indicative of a ligand exchange reaction48. The
mixture was held at low pressure in the antechamber of the glove box for 45 min to
remove ~60% of 2-methoxyethanol. The resulting precursor was then taken out of
the glove box, mixed with 300 mg of pentaerythritol triacrylate, and agitated using
a vortex mixer for 1 min. 7-diethylamino-3-thenoylcoumarin (23 mg) was dis-
solved in 100 mg of dichloromethane, added to the mixture, which was then agi-
tated using a vortex mixer for 1 min.

Two-photon lithography. Metal-containing polymer structures were fabricated on
a silicon chip (1 × 1 cm) using a commercially available TPL system (Photonic
Professional GT, Nanoscribe GmbH). Metal-containing photoresist was drop cast
on a glass slide (0.17 mm thick, 30 mm in diameter) and confined between the glass
slide and a silicon chip using 100-μm thick, 2 × 10-mm ribbons of Kapton tape as
spacers. Laser power and scan speeds were set at at 17.5–22.5 mW and 4–6 mm s−1,
respectively. After the printing process, the samples were developed in 2-
methoxyethanol for 1 h, followed by immersion in PGMEA for 10 min and filtered
IPA for 5 min. The samples were then processed in a critical point dryer (Auto-
samdri-931).

Pyrolysis. Pyrolysis of the cross-linked metal-containing structures was conducted
in two steps in a quartz tube furnace using 4″ quartz tube. As the first step, a
heating profile of 2 °Cmin−1 to 1000 °C, hold at 1000 °C for 1 h was applied under
1 L min−1 argon flow, and the part was let to cool down in the furnace to room
temperature. During the second step the part was heated at 2 °Cmin−1 to 600 °C
under 1 L min−1 forming gas flow (5% H2, 95% N2), held at 600 °C for 1 h, and let
to cool down to room temperature. No additional processing was performed after
pyrolysis.

Materials characterization. SEM images were obtained using an FEI Versa 3D
DualBeam. SEM EDS characterization was performed using a Zeiss 1550VP
FESEM equipped with an Oxford X-Max SDD system using 10 kV electron beam.

TEM and TEM EDS were performed using FEI Tecnai F30ST (300 kV)
transmission electron microscope equipped with Oxford ultra-thin window EDS
detector. TEM sample was prepared by fabricating metal structures directly on
PELCO Holey Silicon Nitride Support Film for TEM with 1250-nm holes (Ted
Pella) following the process described above.

Phases and Miller indices for the phases in HRTEM image (Fig. 3e) were
assigned based on the two lattice distances dhkl and the angle measured from FFT
patterns within the outlined regions. Representative regions 1, 2, and 3 for the FFT
analysis were chosen to contain a single particle or a region within a particle of
interest. First, lattice distances dhkl for nickel, nickel (II) oxide, and nickel carbide
were calculated based on the lattice parameters obtained from refs. 49–52. The
measured distances were then compared to the calculated values and matched

within 5% error. The phase assignment was verified by comparing the angle
measured from the FFT pattern with the theoretical value for the obtained
orientation, and further corroborated using the electron diffraction pattern in
Fig. 3d.

Particle size. Particle sizes (see Supplementary Table 1) were measured from a
bright-field TEM image using ImageJ (see Supplementary Fig. 2). Confidence
interval on the mean particle size was calculated assuming normal distribution of
the particle sizes and unknown variance using t-distribution (n = 40, α = 0.05).
Confidence interval on the variance of the particle size was calculated using χ2

distribution (n = 40, α = 0.05).

Mechanical characterization. Uniaxial compression experiments were conducted
using in situ nanomechanical instrument, SEMentor (InSEM; Nanomechanics and
FEI Quanta 200). Samples were compressed using a diamond flat punch tip with a
diameter of 170 μm at a constant strain rate of 10–3 s−1. Relative density of each of
the structures was calculated using a CAD model created in Abaqus with average
unit cell sizes and beam diameters measured from the SEM images assuming fully-
dense beams. Real-time deformation video and the mechanical data were simul-
taneously captured during the experiment (see Supplementary Movie 1).

Specific strength values shown in Supplementary Table 2 were calculated as the
lattice strength divided by the lattice density. Lattice density values were taken from
refs. 16,37,39 as reported. For structures in refs. 38,40,41, the lattice density was
estimated as a product of the material density and the relative density of the
structure. The material density of SLM NiTi was provided in ref. 40. The material
density of EBM Ti-6Al-4V in ref. 38 was assumed to be similar to Grade 5 Ti-6Al-
4V, 4.43 g cm−3, the closest material to Arcam Ti-6Al-4V ELI used in that work53.
The material density of DMLS AlSi10Mg in ref. 41, 267 g cm−3, was taken from the
material datasheet54. Beam diameter values in refs. 16,37,38,40 were taken as
reported. Beam diameters for AlSi10Mg lattices were estimated from Fig. 10 and 12
in ref. 41. Beam diameters for SLM Ti-6Al-4V were measured from Fig. 2 in ref. 39.
For electroplated copper meso-lattices in ref. 11 specific strengths were calculated
assuming bulk copper density of 8.96 g cm−3.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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